初商若干於縱內,共得若干,皆與上商相呼。除實若 干,餘實若干,另以下法,初商若干倍之。〈倍方不倍縱〉次商 若干於左位初商之次,下法亦置次商若干於倍方 之次,共若干,皆與次商相呼,除實盡得闊數,加不及 數為長。若要還原,以所商得闊若干為實,另以所 得商數。〈加上縱多共若干或減不及餘若干〉若干乘之,見積。 今有田積一千七百五十步,只云「長比闊多一十五 步」,問長、闊各若干。
答曰:「長五十步,闊三十五步。」
法曰:置積為實,以多一十五步為縱,列於下位,以帶 縱《開平方法》除之。初商三十於左位,另於下法,亦置 三十,加於縱上,共得四十五步,與上商相呼,左三對, 右四呼,三四除實一千二百。又左三對右五呼,三五 除實一百五十。另以下法,初商三十倍,作六十,加,縱 多十五,共得七十五。次商五於左位,另於下法,亦置 五於倍方之下,共八十,皆與次商五相呼,左五對右 八呼,五八除實四百步,恰盡得闊三十五步,加多一 十五步,為長。合問。
又法名減積開平方。置田積為實於中,另置不及十 五步於右位,為減積。上商三十於左位,另以下法, 亦置三十於右,為方法,以乘減積一十五步,得四百 五十步,以減中實,餘實一千三百步。卻以初商三十 與上商三十相呼,三三減積九百,餘實四百。就以方 法三十倍作六十,為廉法。次商五步於左,三十之。次 下位亦置五步,以乘減積一十五步,得七十五步。以 減中積,仍餘實三百二十五步。卻以下位廉法六十, 併入次商五步,共六十五步,皆與上商五步。呼五六 除實三百五五除二十五步,得廣三十五步。《合問》 若問縱照前布列,上商五十步,以乘不及十五步, 得七百五十步,併加前積,共二千五百步。卻呼「五五。」 除實二千五百步盡得縱合問。
今有圭田積一百二十六步,闊不及長九步,問長、闊 各若干?
答曰:「長二十一步,闊一十二步。」
法曰:倍田積,得二百五十二步為實,以不及九步為 縱方。於右,上商十步。下法亦置十步於縱九步上,共 一十九步,與上商十步。除實一百九十步,餘六十二 步。另以下法,初商一十倍之,作二十,次商二步於左。 下法亦置二步加於縱方九上,共三十一步。皆與上 商二相呼,除實盡得闊一十二步,加不及九步,得長。 合問。
今有句股田積四百八十六步,只云:句少弦一十八 步,問各若干?
答曰:句闊二十七步,股長三十六步,弦斜四十 五步。
法曰:倍積得九百七十二步為實。以弦差一十八步, 折半得九步,為縱方。開平方法除之,得句二十七步, 加差一十八步,為弦斜四十五步。另以句自乘,弦自 乘,二數相減,餘一千二百九十六步為實。以開平方 法除之,得股長三十六步。合問。
今有句股田積四百八十六步,只云「股少弦九步」,問 各若干?
答曰:「股三十六步,句二十七步,弦四十五步。」
法曰:三因積,得一千四百五十八步為實。以弦差九 步,折半,得四步五分,為縱方。開平方法除之,得股長 三十六步。加九步,為弦四十五步。另以股自乘、弦自 乘,二數相減,餘七百二十九步為實。以開平方法除 之,得句闊二十七步。合問。
《長闊相和歌》:〈與減《縱》《開平》方法同。〉
「長闊相和不識情,四因積步莫差爭。」和步自乘減去 積,餘用《開方》差步名。卻將和步加差步,折半當為長 數成。要知闊步如何見,長步減差闊便明。
今有直田積一千九百二十步,長、闊相和九十二步, 問長、闊各若干?
答曰:「長六十步,闊三十二步。」
法曰:置田積,以四因之,得七千六百八十步。另以和 步九十二步自乘,得八千四百六十四步。減去因積, 餘七百八十四步為實。以開平方法除之,得長闊相 差二十八步,加入和步九十二步,共一百二十步,折 半,得長六十步。內減差步二十八步,餘得闊三十二 步。合問。
又法,名減縱《開平方》。置田積一千九百二十步為實, 以相和九十二步於右為減。縱上商三十,以減九十 二步,餘縱六十二步,與上商三十相呼,三六除實一 千八百。又呼,二三除六十,餘實六十步。又以上商三 十再減,餘縱六十二,仍餘縱三十二。次商二,又減縱 二,餘縱三十,與次商二相呼,二三除實六十。合問。 若先問長者,仍前布列,先商長六十,減縱,亦得。 今有句股田積九百六十步,長、闊相和,九十二步,問 長、闊各若干?
答曰:長六十步,闊三十二步