跳转到内容

御制历象考成 (四库全书本)/表卷02

维基文库,自由的图书馆
表卷一 御制历象考成 表卷二 表卷三上

  钦定四库全书
  御制历象考成表卷二
  月离表一
  太阴年根表
  太阴周岁平行表
  太阴周日平行表
  太阴初均表
  交均距限表
  黄白距度表
  黄白升度差表
  太阴地半径差表
  太阴实行表




  太阴年根表
  太阴年根表以距冬至及月孛行正交行逐年列之前用纪年者乃历元后逐年之干支也表名距冬至者乃逐年天正冬至次日子正太阴平行距丑宫初度之宫度也求逐年距冬至法历元甲子年天正冬至太阴平行应一宫零八度四十分五十七秒一十六微即历元甲子年太阴平行距冬至之数此后用加法如本年为平年则加三百六十五日之太阴平行十三周天外又四宫零九度二十三分零二秒四十三微四十六纤三十四忽四十一芒满全周去之馀为次年距冬至之数如本年为闰年则加三百六十六日之太阴平行十三周天外又四宫二十二度三十三分三十七秒四十五微零二纤四十八忽五十四芒满全周去之馀为次年距冬至之数满三十纤以上者进作一微不足三十纤者去之后仿此月孛行者乃逐年天正冬至次日子正最高过冬至之宫度也求逐年月孛行法历元甲子年天正冬至月孛应三宫零四度四十九分五十四秒零九微即历元甲子年月孛过冬至之数此后用加法如本年为平年则加三百六十五日之月孛行一宫一十度三十九分五十三秒一十六微四十四纤四十六忽零五芒即得次年月孛过冬至之数如本年为闰年则加三百六十六日之月孛行一宫一十度四十六分三十四秒二十一微二十三纤四十一忽零二芒即得次年月孛过冬至之数正交行者乃逐年天正冬至次日子正正交过冬至之宫度也求逐年正交行法历元甲子年天正冬至正交应六宫二十七度一十三分三十七秒四十八微即历元甲子年正交过冬至之数此后用减法如本年为平年则减三百六十五日之正交行一十九度一十九分四十三秒三十六微即得次年正交过冬至之数如本年为闰年则减三百六十六日之正交行一十九度二十二分五十四秒一十四微二十四纤即得次年正交过冬至之数用表之法如求康熙六十一年壬寅之年根则察本表纪年自历元甲子年后第一壬寅为所求之年乃视壬寅所对各数录之其距冬至为一宫零三度五十一分五十六秒一十一微其月孛行为六宫二十一度零五分四十八秒二十七微其正交行为六宫一十二度一十五分二十五秒一十五微也







<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
  太阴周岁平行表
  太阴周岁平行表以太阴平行及月孛行正交行逐日列之其前用日数者自一日至三百六十六日之日数也表名平行者乃太阴本轮自一日至三百六十六日之平行各数也太阴每日平行一十三度一十分三十五秒零一微一十六纤一十四忽一十三芒累加之即得逐日平行之各数月孛行者乃太阴本天自一日至三百六十六日之最高行各数也最高每日行六分四十一秒零四微三十八纤五十四忽五十七芒累加之即得逐日月孛行之各数正交行者乃自一日至三百六十六日之正交行各数也正交每日退行三分一十秒三十八微二十四纤累加之即得逐日正交行之各数
  用表之法如求冬至后二十五日之太阴平行及月孛行正交行则察本表日数二十五所对各数录之其平行为十宫二十九度二十四分三十五秒三十二微即二十五日太阴平行之共数其月孛行为二度四十七分零六秒五十六微即二十五日月孛行之共数其正交行为一度一十九分二十六秒即二十五日正交行之共数也















<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
  太阴周日平行表
  太阴周日平行表以一日内之时分秒递降列之盖时刻之分秒与度数之分秒皆以六十递析一日二十四时每时六十分每分六十秒故太阴一时之平行与一分或一秒之平行皆同数不过递降一位耳如太阴一时行三十二分有馀一分行三十二秒有馀一秒行三十二微有馀其平行之数同为三十二而为分为秒为微则递降也表分两段第一段自一至三十者一时至三十时一分至三十分一秒至三十秒第二段三十一至六十者三十一时至六十时三十一分至六十分三十一秒至六十秒其所对之数则太阴逐时逐分逐秒之各平行数也太阴每日之平行用二十四时除之得三十二分五十六秒二十七微三十三纤一十忽三十五芒是为一时之平行累加之为逐时之平行逐分逐秒之平行皆同数而递降一位时之平行为度分秒微分之平行为分秒微纤秒之平行为秒微纤忽月孛行与正交行皆仿此
  用表之法如求五时三十六分四十八秒之太阴平行及月孛行正交行则察本表太阴平行五时所对之数为二度四十四分四十二秒一十八微三十六分所对之数为一十九分四十五秒五十二微三十二纤四十八秒所对之数为二十六秒二十一微一十纤零三忽合计三数得三度零四分五十四秒三十一微四十二纤零三忽即所求之太阴平行也月孛行五时所对之数为一分二十三秒三十三微三十六分所对之数为一十秒零一微三十七纤四十八秒所对之数为一十三微二十二纤零九忽合计三数得一分三十三秒四十七微五十九纤零九忽即所求之月孛行也正交行五时所对之数为三十九秒四十三微三十六分所对之数为四秒四十五微五十八纤四十八秒所对之数为六微二十一纤一十七忽合计三数得四十四秒三十五微一十九纤一十七忽即所求之正交行也



<子部,天文算法类,推步之属,御制历象考成,表卷二>
  太阴初均表
  太阴初均表按最高最卑分顺逆列之引数初宫至五宫为最高后列于上引数六宫至十一宫为最卑后列于下前后列引数度分分顺逆以别加减中列逐宫逐度之初均数太阴引数在上六宫者用顺度其号为减太阴引数在下六宫者用逆度其号为加
  用表之法以引数之宫对引数之度分其纵横相遇即所求之初均数也表以十分为率若引数有零分者按中比例法求之设太阴引数为一宫三度四十六分求其初均数则以一宫三度四十分所对之数二度四十一分四十六秒与下层三度五十分所对之数二度四十二分二十九秒相减馀四十三秒为一十分之较乃以引数一十分为一率较数四十三秒为二率设数六分为三率求得四率二十五秒小馀八收作二十六秒与一宫三度四十分之初均数二度四十一分四十六秒相加因五十分之初均数大于四十分之初均数故相加反是则相减也得二度四十二分一十二秒为所求之初均数其号为减即为减均也














<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
  交均距限表
  交均距限表按朔望两弦分顺逆列之朔望后之各宫列于上月距日初宫至二宫为朔后六宫至八宫为望后其数同两弦后之各宫列于下月距日三宫至五宫为上弦后九宫至十一宫为下弦后其数同月距日次引在上六宫者用顺度交均之号为减月距日次引在下六宫者用逆度交均之号为加
  用表之法以月距日次引之宫对月距日次引之度其縦横相遇即所求之交均及距限也表以逐度为率若月距日次引有零分者交均则按中比例法求之距限则取相近者用之不足三十分者去之满三十分以上则进作一度察表设月距日次引六宫八度一十五分求交均及距限则以六宫八度所对之交均三十分一十秒与下层九度所对之交均三十三分四十八秒相减馀三分三十八秒为一度之较乃以一度化六十分为一率较数化二百一十八秒为二率设数一十五分为三率求得四率五十四秒小馀五收作五十五秒与八度之交均三十分一十秒相加因九度之交均大于八度之交均故相加反是则相减也得三十一分零五秒为所求之交均其号为减即为减均又察六宫八度所对之距限四度五十八分五十三秒即所求之距限也因八度一十五分与八度近与九度远故即用八度之数











<子部,天文算法类,推步之属,御制历象考成,表卷二>
  黄白距度表
  黄白距度表按两交前后分顺逆列之两交后之各宫列于上初宫至二宫系正交后为北纬六宫至八宫系中交后为南纬其数同两交前之各宫列于下三宫至五宫系中交前为北纬九宫至十一宫系正交前为南纬其数同太阴距交实行在上六宫者用顺度太阴距交实行在下六宫者用逆度
  用表之法以距交实行之宫对距交实行之度其縦横相遇即所求之距度也表分六限依距限相近者取用黄白大距逐日不同故以朔望时黄白大距四度五十八分三十秒与两弦时黄白大距五度一十七分三十秒均分为六限各求其距纬列表每限大距相差三分有馀夫大距止差三分则距纬所差甚微可以不计故依距限相近者取用也设距限为五度太阴距交实行为一宫五度求黄白距度则察大距四度五十八分三十秒黄白距度表为与距限五度相近一宫五度所对之数为二度五十一分零四秒即所求之黄白距度也若距交实行有零分者亦按中比例法求之
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
  黄白升度差表
  黄白升度差表亦按两交前后分顺逆列之两交后六宫列于上两交前六宫列于下前后列距交白道度分顺逆以别加减中列逐宫逐度之黄白升度差太阴距交实行在上六宫者用顺度其号为减太阴距交实行在下六宫者用逆度其号为加
  用表之法以距交实行之宫对距交实行之度其纵横相遇即所求之升度差也设太阴距交实行为二宫六度求黄白升度差则察二宫六度所对之数为四分五十秒即所求之黄白升度差其号为减是为减差也若距交实行有零分者亦按中比例法求之





<子部,天文算法类,推步之属,御制历象考成,表卷二>
  太阴地半径差表
  太阴地半径差表按太阴距地与地半径比例数分十限列之自距地五十三地半径至距地六十二地半径表内度分秒即各限实高度所生之地半径差也
  用表之法如太阴距地五十三地半径推得太阴实高二十六度求地半径差则察太阴距地五十三地半径表实高二十六度所对之数为五十八分四十七秒即所求之地半径差与实高二十六度相减馀二十五度零一分一十三秒为本时太阴之视高也如先测得太阴视高二十五度零一分一十三秒则以地半径差五十八分四十七秒与视高相加得二十六度为本时太阴之实高也若高度有零分者按中比例法求之




<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
<子部,天文算法类,推步之属,御制历象考成,表卷二>
  太阴实行表
  太阴实行表亦按最高最卑分顺逆列之最高后六宫列于上最卑后六宫列于下前后列引数度中列逐宫逐度之太阴实行太阴实行者太阴一小时之实行也本轮心之行度为平行一小时恒为三十二分五十六秒二十八微而实行则有迟疾盖因均数时时不同故实行亦不同也其理与太阳实行同太阴引数在上六宫者用顺度太阴引数在下六宫者用逆度
  用表之法以引数之宫对引数之度其縦横相遇即所求之实行也设太阴引数为初宫二十四度求实行则察初宫二十四度所对之数为三十分二十五秒即所求之实行也初宫在上故用顺度引数有零分者满三十分以上则进作一度不用中比例因逐度实行所差甚微故也




<子部,天文算法类,推步之属,御制历象考成,表卷二>















  御制历象考成表卷二
<子部,天文算法类,推步之属,御制历象考成>

本作品在全世界都属于公有领域,因为作者逝世已经超过100年,并且于1929年1月1日之前出版。

Public domainPublic domainfalsefalse