測圓海鏡 (四庫全書本)/卷10
測圓海鏡 卷十 |
欽定四庫全書
測圓海鏡卷十
元 李冶 撰
三事和八問
或問甲乙同立於乾隅乙向東行不知步數而立甲向南直行多於乙步望見乙復就東北斜行與乙相㑹二人共行了一千六百步又雲甲南行不及斜行八十步問答同前
法曰共步內減四之小差復以自之於上以十八個小差冪減於上為實四之共步內減十六個小差於上卻以十八小差加上為益從四步常法開平方得中差
草曰別得共步為三事和也不及步即小差也立天元一為中差加二之小差得□□為大小差併以加入三事和得□□為三也倍三事得三千二百內去大小差併得□□為三和也內減三餘□□為三個黃方以自之得□□□為九段黃方冪〈寄左〉再置天元中差加小差得□□為大差以小差□乘之得□□為半個黃方冪就一十八之得□□為同數與左相消得□□□開平方得二百八十步即中差也其餘各依法求之合問
或問以前三事和又雲大差三百六十步問答同前法曰倍雲數以雲數乘之又九之於上倍雲數加三事和為前數倍雲數減二之三事和為後數二數又相減餘一百六十為泛率以自乘減上位為平實十八之雲數內又加四之泛率為從四常法得中差草曰立天元一為中差置雲步倍之內減天元得□□為大小差共數加於三事和得□□為三也倍三事內減大小差共數得下式□□為三和也內減三得□□為三個黃方靣也以自之得□〈□□〉□為九段黃方冪〈寄左〉再以天元減大差得下式□□為小差又倍之得□□以雲數乘之得下式□□又就分九之得下式□□與左相消得下式□□□開平方得二百八十步即中差也合問
或問依前見三事和又雲中差二百八十步問答同前法曰和步加差步以自乘於上又和步內減差步以自乘加上位為平實四之和步為從二步益隅得大
草曰立天元一為大減共步得□□為和副置之上位減差步得□□為二勾以自之得丨□□為四段勾冪也下位加差步得□□為二股以自之得丨□□為四段股冪也二位相併得□□□為四段冪〈寄左〉然後以天元自之又四之得□□為同數與左相消得□□□開平方得六百八十步即大也倍之以減於三事和餘即城徑也合問
或問依前見三事和又雲小差大差併四百四十步問答同前
法曰併前後二數三而一為反以減共步得數又以減得城徑
草曰二數相併得□三而一得□即也以減三事和得□即和也和又相減餘二百四十步即城徑也合問
或問依前見三事和又雲小差中差大差共七百二十問答同前
法曰半雲數自之又三之於上以三事減上位為平實〈按以三事減上位有誤此係偶合三事之數耳當雲加半段三事冪又倍三事和加大差復以大差乘之減上位為平實〉倍三事於上半雲數而五之加上位為益從二常法得小差
草曰別得三差共為二大差也立天元一為小差併大差加入三事和得□□為三也以自之得丨□□為十八積九較冪〈寄起〉又以共三事步自之得□方於上又以天元小差乘大差倍之得□加於上得□□為十二積四較冪又加五〈按即三因二歸〉得□□為十八個直積六個較冪以減寄起餘得丨□□為三個較冪〈寄左〉然後以天元小差減大差得□□為中差以自之得丨□□又三之得下式川□□為同數與寄左相消得□□□平方而一得八十步即小差也餘各依數求之合問
或問依前見三事和又雲明黃方叀黃方共六十六問答同前
法曰二事內加二之共步復以二之共步乘之於上位三事內減二之共步復以二之共步乘之得數減上位為平實三事內加二之共步又倍之於上又三〈按三當作六〉之共步加上位為泛寄三事內減二之共步又四之於上又三〈按三亦當作六〉之共步減上位得數以減泛寄為從作十八段虛平方開之得虛黃方
草曰別得共步即虛大小差也立天元一為虛黃方以三之加入倍之共步得□□為圓徑也以圓徑加三事得□□為二通和以圓徑減三事得□□為二通又副置圓徑上加天元得□□為二虛和下減天元得□□為二虛乃置二大和以二小乘之得下□□□〈寄左〉然後置二大以二小和乘之得下式□□□與左相消得□□□平方開之得三十六步即虛黃方也其餘各依法求之合問
或問依前見三事和又雲皇極二百八十九步問答同前
法曰二數相乘為實從空一益隅得大
草曰立天元一為通內減皇餘□□為皇極勾股和以自之得丨□□於上以皇極冪減上位得丨□為二直積合於皇極除之不除寄為母便以此為城徑〈寄左〉乃以二之天元減共步得□□為黃方面以皇通之得□□與左相消得丨□□開平方得六百八十步即大也合問
或問依前見三事和又雲見太虛一百二步問答同前
法曰半虛乘三事為實三事為從四虛隅翻開之得半大
草曰識別得以虛減大半之為皇極以虛加大半之為皇極勾股共也立天元一為半大以二之內減虛得□□折半得□□為皇極也又以虛加大而半之得□□為皇極和也和自之得丨□□於上又以自之得丨□□減上位餘得下□為二直積合以皇極除之不除寄為分母便以此為城徑〈寄左〉然後以四之天元減三事共餘□□又以皇極分母通之得□□□為同數與左相消得□□□倒積開得三百四十步倍之即大也合問
測圓海鏡卷十
Public domainPublic domainfalsefalse