Faa de Bruno's Theorem
曾 炯
l
m
′
−
l
′
m
{\displaystyle lm'-l'm}
乘冪之行列式
因欲直接證明多種函數之爲行列式形者,爲二元形Binary quantic之不變式invariants及共變式covariants,有初簡單定理對於某種行列式極爲有助,即Faa de Bruno's Theorem是也.此定理之最初三類爲:
|
l
,
m
l
′
,
m
′
|
=
l
m
′
−
l
′
m
{\displaystyle {\begin{vmatrix}l,&m\\l',&m'\end{vmatrix}}=lm'-l'm}
|
l
2
l
m
m
2
2
l
l
′
l
m
′
+
l
′
m
,
2
m
m
′
l
′
2
l
′
m
′
m
′
2
|
=
(
l
m
′
−
l
′
m
)
3
{\displaystyle {\begin{vmatrix}l^{2}&lm&m^{2}\\2ll'&lm'+l'm,&2mm'\\l'^{2}&l'm'&m'^{2}\end{vmatrix}}=(lm'-l'm)^{3}}
|
l
3
l
2
m
l
m
2
m
3
3
l
2
l
′
,
2
l
l
′
m
+
l
2
m
′
,
2
l
m
m
′
+
l
′
m
2
3
m
2
m
′
3
l
l
′
2
,
l
′
2
m
+
2
l
l
′
m
′
,
l
m
2
+
2
l
′
m
m
′
,
3
m
m
′
2
l
′
3
l
′
2
m
′
l
′
m
′
2
m
′
2
|
=
(
l
m
′
−
l
′
m
)
6
{\displaystyle {\begin{vmatrix}l^{3}&l^{2}m&lm^{2}&m^{3}\\3l^{2}l',&2ll'm+l^{2}m',&2lmm'+l'm^{2}&3m^{2}m'\\3ll'^{2},&l'^{2}m+2ll'm',&lm^{2}+2l'mm',&3mm'^{2}\\l'^{3}&l'^{2}m'&l'm'^{2}&m'^{2}\end{vmatrix}}=(lm'-l'm)^{6}}
而此一般定理General Theorem,乃一行列式,其第一列由下列各元素而成
l
r
,
l
r
−
1
m
,
l
r
−
2
m
2
,
⋯
⋯
⋯
⋯
l
m
r
−
1
,
m
r
{\displaystyle l^{r},l^{r-1}m,l^{r-2}m^{2},\cdots \cdots \cdots \cdots lm^{r-1},m^{r}}
而其各列可由第一列繼續的in succession與
l
′
∂
∂
l
+
m
′
∂
∂
m
,
1
1
⋅
2
(
l
′
∂
∂
l
+
m
′
∂
∂
m
)
2
,
⋯
⋯
⋯
⋯
1
r
!
(
l
′
∂
∂
l
+
m
′
∂
∂
m
)
r
,
{\displaystyle l'{\frac {\partial }{\partial l}}+m'{\frac {\partial }{\partial m}},{\frac {1}{1\cdot 2}}\left(l'{\frac {\partial }{\partial l}}+m'{\frac {\partial }{\partial m}}\right)^{2},\cdots \cdots \cdots \cdots {\frac {1}{r!}}\left(l'{\frac {\partial }{\partial l}}+m'{\frac {\partial }{\partial m}}\right)^{r},}
演算Operating而得之,此行列式爲
l
m
′
−
l
′
m
{\displaystyle lm'-l'm}
之乘寬即
1
2
r
(
r
+
1
)
{\displaystyle {\frac {1}{2}}r(r+1)}
th 冪也.
此又有顯然易見者,卽可同樣的先書下其最末一列:
l
′
r
,
l
′
r
−
1
m
′
,
l
′
r
−
2
m
′
2
,
⋯
⋯
⋯
⋯
l
′
m
′
r
−
1
,
m
′
r
{\displaystyle l'^{r},l'^{r-1}m',l'^{r-2}m'^{2},\cdots \cdots \cdots \cdots l'm'^{r-1},m'^{r}}
而繼續的向上upwards 由此列與
l
∂
∂
l
′
+
m
∂
∂
m
′
,
1
1
⋅
2
(
l
∂
∂
l
′
+
m
∂
∂
m
′
)
2
,
⋯
⋯
⋯
⋯
1
r
!
(
l
∂
∂
l
′
+
m
∂
∂
m
′
)
r
{\displaystyle l{\frac {\partial }{\partial l'}}+m{\frac {\partial }{\partial m'}},{\frac {1}{1\cdot 2}}\left(l{\frac {\partial }{\partial l'}}+m{\frac {\partial }{\partial m'}}\right)^{2},\cdots \cdots \cdots \cdots {\frac {1}{r!}}\left(l{\frac {\partial }{\partial l'}}+m{\frac {\partial }{\partial m'}}\right)^{r}}
演算而得其餘各列也.因由Taylor's Theorem,在第
(
s
+
1
)
{\displaystyle (s+1)}
行之元素向下讀之乃
(
l
+
t
l
′
)
r
−
s
(
m
+
t
m
′
)
s
{\displaystyle (l+tl')^{r-s}(m+tm')^{s}}
之展開
t
{\displaystyle t}
之各冪Various powers之係數;而同樣向上讀之,乃
(
τ
l
+
l
′
)
r
−
s
(
τ
m
+
m
′
)
s
{\displaystyle (\tau l+l')^{r-s}(\tau m+m')^{s}}
之展開
τ
{\displaystyle \tau }
之各冪之係數也.
此兩種形成行列式之方法;謂之第一種寫法及第二種寫法.
此定理之第一類卽可證明,其第二類之證明:以
−
m
/
m
′
{\displaystyle -m/m'}
乘第二列,
m
2
/
m
′
2
{\displaystyle m^{2}/m'^{2}}
乘第三列,加之於第一列,卽可得證明之,第三類之證明亦可由同樣之方法易於求之.此一般定理,乃線偏微分方程式Lagrange解法之定理The theory of Lagrange's solution of linear partial differential equations中,一簡易習題,茲將進而討論之.
由乘積Products微分之普通之規則,可知微分
r
{\displaystyle r}
次行列式之結果,可書爲
r
{\displaystyle r}
個行列式之和,其每行列式由微分原行列式中一列之元素,而遺留其餘各列元素不動而得之.試思此原行列式爲第一種寫法,以
l
′
∂
∂
l
+
m
′
∂
∂
m
{\displaystyle l'{\frac {\partial }{\partial l}}+m'{\frac {\partial }{\partial m}}}
演算之.此結果乃
r
{\displaystyle r}
個行列式之和,而此等列行式皆消滅爲零Vanish因演算任何列之結果,除最末一列外,皆發生爲其下一列following row之數值之倍數a numerical multiple而最末一列演算之結果爲一列零.於是若
D
{\displaystyle D}
表示此原行列式,則得
l
′
∂
D
∂
l
+
m
′
∂
D
∂
m
=
0
,
{\displaystyle l'{\frac {\partial D}{\partial l}}+m'{\frac {\partial D}{\partial m}}=0,}
故由Lagrange定理僅含有
l
{\displaystyle l}
及
m
{\displaystyle m}
於
l
m
′
−
l
′
m
{\displaystyle lm'-l'm}
關係之中.
再試思
D
{\displaystyle D}
爲第二種寫法,以
l
∂
∂
l
′
+
m
∂
∂
m
′
{\displaystyle l{\frac {\partial }{\partial l'}}+m{\frac {\partial }{\partial m'}}}
演算之,同樣得
l
∂
D
∂
l
′
+
m
∂
D
∂
m
′
=
0.
{\displaystyle l{\frac {\partial D}{\partial l'}}+m{\frac {\partial D}{\partial m'}}=0.}
故
D
{\displaystyle D}
僅含有
l
′
{\displaystyle l'}
及
m
′
{\displaystyle m'}
於
l
m
′
−
l
′
m
{\displaystyle lm'-l'm}
關係之中.
是故此行列式
D
{\displaystyle D}
,僅爲
l
m
′
−
l
′
m
{\displaystyle lm'-l'm}
之函數,且爲同次式Homogeneous而必爲
l
m
′
−
l
′
m
{\displaystyle lm'-l'm}
之一單冪single power帶有一可能的數值的因數而成者也.但此數值的因數爲
1
{\displaystyle 1}
,例如取
l
=
m
′
=
1
{\displaystyle l=m'=1}
,
l
′
=
m
=
0
{\displaystyle l'=m=0}
,則
l
m
′
−
l
′
m
{\displaystyle lm'-l'm}
爲
1
{\displaystyle 1}
,而
D
{\displaystyle D}
爲一主對角線A principal diagonal之
1
{\displaystyle 1}
,及其他各元素零而成.
由是可知
D
{\displaystyle D}
爲
l
,
m
,
l
′
,
m
′
{\displaystyle l,m,l',m'}
之
r
(
r
+
1
)
{\displaystyle r(r+1)}
次元Dimension,更由此事實而知
D
{\displaystyle D}
爲
l
m
′
−
l
′
m
{\displaystyle lm'-l'm}
之
1
2
r
(
t
+
1
)
{\displaystyle {\frac {1}{2}}r(t+1)}
th 冪矣.
試證明
|
∂
4
u
∂
x
4
,
∂
4
u
∂
x
3
∂
y
,
∂
4
u
∂
x
2
∂
y
2
∂
4
u
∂
x
3
∂
y
,
∂
4
u
∂
x
2
∂
y
2
,
∂
4
u
∂
x
∂
y
3
∂
4
u
∂
x
2
∂
y
2
,
∂
4
u
∂
x
∂
y
3
,
∂
4
u
∂
y
4
|
{\displaystyle {\begin{vmatrix}{\frac {\partial ^{4}u}{\partial x^{4}}},&{\frac {\partial ^{4}u}{\partial x^{3}\partial y}},&{\frac {\partial ^{4}u}{\partial x^{2}\partial y^{2}}}\\{\frac {\partial ^{4}u}{\partial x^{3}\partial y}},&{\frac {\partial ^{4}u}{\partial x^{2}\partial y^{2}}},&{\frac {\partial ^{4}u}{\partial x\partial y^{3}}}\\{\frac {\partial ^{4}u}{\partial x^{2}\partial y^{2}}},&{\frac {\partial ^{4}u}{\partial x\partial y^{3}}},&{\frac {\partial ^{4}u}{\partial y^{4}}}\end{vmatrix}}}
爲一個二元形
u
{\displaystyle u}
之一共變式,於特別情形,若
u
{\displaystyle u}
爲四次式quartic,則爲一不變式.以爲本定理之標準應用。
由上述
(
l
m
′
−
l
′
m
)
3
{\displaystyle (lm'-l'm)^{3}}
卽
M
3
{\displaystyle M^{3}}
之行列式,行與行乘此式二次。
第一次乘法之結果,因
(
l
∂
∂
x
+
l
′
∂
∂
y
)
2
=
∂
2
∂
X
2
,
(
l
∂
∂
x
+
l
′
∂
∂
y
)
(
m
∂
∂
x
+
m
′
∂
∂
y
)
=
∂
2
∂
X
∂
Y
{\displaystyle \left(l{\frac {\partial }{\partial x}}+l'{\frac {\partial }{\partial y}}\right)^{2}={\frac {\partial ^{2}}{\partial X^{2}}},\left(l{\frac {\partial }{\partial x}}+l'{\frac {\partial }{\partial y}}\right)\left(m{\frac {\partial }{\partial x}}+m'{\frac {\partial }{\partial y}}\right)={\frac {\partial ^{2}}{\partial X\partial Y}}}
(
m
∂
∂
x
+
m
′
∂
∂
y
)
≡
∂
2
∂
Y
2
{\displaystyle \left(m{\frac {\partial }{\partial x}}+m'{\frac {\partial }{\partial y}}\right)\equiv {\frac {\partial ^{2}}{\partial Y^{2}}}}
|
∂
2
∂
X
2
⋅
∂
2
u
∂
x
2
,
∂
2
∂
X
∂
Y
⋅
∂
2
u
∂
x
2
,
∂
2
∂
Y
2
⋅
∂
2
u
∂
x
2
∂
2
∂
X
2
⋅
∂
2
u
∂
x
∂
y
,
∂
2
∂
X
∂
Y
⋅
∂
2
u
∂
x
∂
y
,
∂
2
∂
Y
2
⋅
∂
2
u
∂
x
∂
y
∂
2
∂
X
2
⋅
∂
2
u
∂
y
2
,
∂
2
∂
X
∂
Y
⋅
∂
2
u
∂
y
2
,
∂
2
∂
Y
2
⋅
∂
2
u
∂
y
2
|
{\displaystyle {\begin{vmatrix}{\frac {\partial ^{2}}{\partial X^{2}}}\cdot {\frac {\partial ^{2}u}{\partial x^{2}}},&{\frac {\partial ^{2}}{\partial X\partial Y}}\cdot {\frac {\partial ^{2}u}{\partial x^{2}}},&{\frac {\partial ^{2}}{\partial Y^{2}}}\cdot {\frac {\partial ^{2}u}{\partial x^{2}}}\\{\frac {\partial ^{2}}{\partial X^{2}}}\cdot {\frac {\partial ^{2}u}{\partial x\partial y}},&{\frac {\partial ^{2}}{\partial X\partial Y}}\cdot {\frac {\partial ^{2}u}{\partial x\partial y}},&{\frac {\partial ^{2}}{\partial Y^{2}}}\cdot {\frac {\partial ^{2}u}{\partial x\partial y}}\\{\frac {\partial ^{2}}{\partial X^{2}}}\cdot {\frac {\partial ^{2}u}{\partial y^{2}}},&{\frac {\partial ^{2}}{\partial X\partial Y}}\cdot {\frac {\partial ^{2}u}{\partial y^{2}}},&{\frac {\partial ^{2}}{\partial Y^{2}}}\cdot {\frac {\partial ^{2}u}{\partial y^{2}}}\end{vmatrix}}}
第二次乘法變易其每元素之微分次數,則
|
∂
4
u
∂
X
4
,
∂
4
u
∂
X
3
∂
Y
,
∂
4
u
∂
X
2
∂
Y
2
∂
4
u
∂
X
3
∂
Y
,
∂
4
u
∂
X
2
∂
Y
2
,
∂
4
u
∂
X
∂
Y
3
∂
4
u
∂
X
2
∂
Y
2
,
∂
4
u
∂
X
∂
Y
3
∂
4
u
∂
Y
4
|
{\displaystyle {\begin{vmatrix}{\frac {\partial ^{4}u}{\partial X^{4}}},&{\frac {\partial ^{4}u}{\partial X^{3}\partial Y}},&{\frac {\partial ^{4}u}{\partial X^{2}\partial Y^{2}}}\\{\frac {\partial ^{4}u}{\partial X^{3}\partial Y}},&{\frac {\partial ^{4}u}{\partial X^{2}\partial Y^{2}}},&{\frac {\partial ^{4}u}{\partial X\partial Y^{3}}}\\{\frac {\partial ^{4}u}{\partial X^{2}\partial Y^{2}}},&{\frac {\partial ^{4}u}{\partial X\partial Y^{3}}}&{\frac {\partial ^{4}u}{\partial Y^{4}}}\end{vmatrix}}}
如是上述之事實證明矣
注意I. 此篇譯自 E. B. Elliott's Algebras of Quantics 中16,17兩節
注意II. The theory of Lagrange's solution of linear partial differential equations可參考A. R. Forsyth's Differential Euqations之187,189兩節PP.392-394.
注意III. Faa de Bruno (1825-1888)
本譯文與其原文有分別的版權許可。譯文版權狀況僅適用於本版本。
原文
這部作品在1929年1月1日以前出版,其作者1937年逝世,在美國 以及版權期限是作者終身加80年 以下的國家以及地區,屬於公有領域 。
這部作品也可能在本國本地版權期限更長,但對外國外地作品應用較短期限規則的國家以及地區,屬於公有領域 。
Public domain Public domain false false
譯文
1996年1月1日,這部作品在原著作國家或地區屬於公有領域 ,之前在美國從未出版,其作者1940年逝世,在美國 以及版權期限是作者終身加80年 以下的國家以及地區,屬於公有領域 。
這部作品也可能在本國本地版權期限更長,但對外國外地作品應用較短期限規則的國家以及地區,屬於公有領域 。
Public domain Public domain false false