地面及水面上測經緯度法:
地水球,週圍亦分三百六十度,以東西為經、以南北為緯;與天球不異。〈見《全地圖》。〉泛海陸行者,悉依指南針之向。蓋此有定理,有定法,并有定器。定器者,即指南鍼盤,所謂地平經儀。其盤分向三十有二,如正南北、東西,乃四正向也;如東南、東北、西南、西北,乃四角向也。又有在正與角之中各三向,各相距十一度十五分,共為地平四分之一也。自南北徂東西起數,而各方向線,乃其過頂極交地平之大圈也。其鍼愈長而輕,則所定方向愈準,但其長短,勿令有過不及之差,而製法務須合於吸鐵石之有力者,則自準耳。〈見一百零一圖指南針及吸鐵石之性另有本論〉此所謂「定器」也。定法者,凡人之遠行,或陸或海,皆依鍼盤之向線而行。其道列有三等:凡正南、正北行者,則以地緯度而定其里數之遠近焉。凡正東、正西赤道下行者,則以地經度而推其里數之遠近焉。其或行于赤道之外而但與赤道圈平行者,則以大小圈度相應表而可以推其里數之遠近焉。此兩所推,近遠之法易明也。但正南北東西之外,皆為斜行,其為里數甚繁,推步不易。或以經緯推距度及方位,或以經及方向推其距與緯,又或以緯與距度推經度及方向,或以方向及距推經緯度。凡此即勾股法有所不能求也。要惟依地水球之圖形,用曲線之三角形法,斯得其解也。又或有用銅、鐵木等大圓球,其法最簡。但遠行者率用鍼盤向線為便,而大球等器則難為攜帶也。又推曲線三角形之法,其理更為難明。熟於其法者,蓋亦鮮矣。故特照三角形法推算,而為測路者,立有幾度數三等之表,名曰《地經緯方向表》。乃用簡法而為便於測路者,詳見於後篇。今姑舉數題,以明其用法。
第一題
有某兩處地緯度及方向,求其相距。假如從甲處起行,依鍼盤第三方之向,往丙處。〈見「一百零二圖。」 〉而甲處緯度:〈即本極高度〉為二十八度丙處之緯度。三十六度。求兩處相距度分。法曰:「以大緯減小緯,即得八度。」次查地經緯及方向表內第三向正對緯之八度,即縱橫兩列,相遇之方內,得九度三十七分,變之為里。〈見度變里數表〉則兩處相距為二千四百零四里又三十六丈也。若緯度外另有緯分,即照前法入表,而得其相應之度分。假如丙丁兩處緯度之差,為十度四十五分,而海上有舟,依第五向從丙至丁,則第五向對緯之十度,縱橫相遇,方內得距之十八度。又本方對緯之四十分,而相應得七十二分。〈皆度數之分也〉又對緯之五分,而於相應方內得九分,總計之,即得十九度二十一分之相距,變為里數,共得四千八百三十七里一百零八丈。
第二題
有兩處相距及方向,求其緯差。假如有舟於此,依鍼盤第五方之向,從北極高五十三度十二分,行過二千二百五十里,變之為度,相應九度。求本舟見在北極之高度幾何。法曰:第五向下查九度相對有何緯度,即得五度。次以五十三度十二分減五度,餘四十八度十二分,即本舟所見在北極之高度分也。〈自北之南,則緯差度減;自南之北,則緯差度加;〉
第三題
有兩處經度差及方向。求其緯度,假如甲處在第三十度之子午圈下,本極在地平高二十三度,從此地徂東北,依鍼盤第四方之向舟發而至丁處,即四十五度,子午圈之下兩處經差為十五度。求丁處本極在地平上度數幾何,法曰:查第二表右直行內兩處經差即十五度,而第四向下縱橫相遇,方得十四度四十九分,即為兩處緯差。徂北緯度加,即丁處之本極,必在地平上三十七度四十九分也。若兩處經差度外另有分數,則用三率法以推其緯度。假如甲丁兩處經差為七度二十分,而從甲處依第二方向,徂東北至丁處。求丁處緯度幾何?法曰:查第二表右直行內七度,而第二向下相應,得十六度三十九分。又本行內查第八度,而第二向下相應有十八度五十七分。以大減小,得差一百三十九分。與四十分相乘,而所得數與六十分歸之,即得一度三十二分。加於甲處緯度,即十六度三十九分,共得十八度十一分,為丁處緯度也。
第四題
有兩處緯差及方向。求其經差。假如從緯之五十度,依鍼盤第二向徂東南至緯之三十四度。