跳转到内容

Page:Gujin Tushu Jicheng, Volume 033 (1700-1725).djvu/55

維基文庫,自由的圖書館
此页尚未校对

雙行相應一秒,因而上第四題所定之垂球六十次往來之時,此垂球往來一百二十次,又更加細微。亦曾另製小垂線球,推定其一往一來,相應天上十微。所以六次往來對一秒,六十往來對十秒,三百六十往來對一分。若以之定自鳴鐘,雖歷二三月之久,不調其輪牌而分秒無差,待此器至中夏之時,自詳言其用法。

《第六題》:「凡求時刻之分秒,如無諸儀,參測其細微,則隨時隨處而以本身之脈息可推而知也。蓋人當氣血平和之時,其一息大率應時刻分之一秒,如當測時切脈而自數其息,則以其定秒推之,而以球之往來較之。」 假如球每一往一來為一秒,而其六十次之往來為一分,當彼六十次往來之時,若己之脈息亦至六十次,則每一息代秒用之。若有過不及之差,則用比例法。假如球六十次往來之時,數己之脈息至六十八次,則一次為比例之共率,因得三十四脈息相應三十秒,十七脈息相應十五秒,餘倣此。蓋六十八與三十四,如六十與三十,又六十八與十七,如六十與十五,同一比例之理也。第七題擬天以下之疾行比而推天以上之疾行近。今有測量名家,依前定秒微諸法,曾驗放小銃時於三秒內,其彈行一百八十二丈之遠。設使此彈常飛行空中而不斷,則必閱十一年零一百一十八日,而其所行,不能盡太陽一日所行之度也。照此推算,則六十秒即一分內行三千六百四十丈之遠,而六十分即四刻內行二十一萬八千四百丈之遠;若九十六刻即一日內行五百二十四萬一千六百丈之遠。今以丈數歸之里數,凡一里既為二百一十六丈,則前所計丈數共為二萬四千二百六十六里一百四十丈也。然地球每一度為二百五十里算之,則天下週圍共九萬里;而銃之,彈一日止行二萬四千二百六十七里矣;若行至九萬里之遠,則必須三日零六十八刻有餘。《曆學公論》曰:「地球之全徑,其在於太陽天之全徑者,如一與一千一百四十二之比例。」 今週與週如徑與徑之比例,則太陽天週圍之里數,包地週圍之里數一千一百四十二倍也。若照前所擬銃彈,行空三日而不斷,則必須四千二百三十三日,即十一年零一百一十八日,始行盡於太陽天一日內所行一週之里數矣。又《恆星》天全徑與太陽天全徑,如十二與一,則恆星天一週包日天一週十二倍也。故夫銃彈以行盡太陽天之數推之,則必須一百三十九年零八十四日,始行盡於恆星一日所行之里數矣。然凡此天行之疾,則又有何所比擬哉?

作法假如:六十四圖。庚辛為銅橫條,釘穩於橫木梁上,令毫不動搖。壬丁戊己為粗銅耳,中安銅軸,而軸長徑線丁戊須與地平線平行。軸中繫垂線球,其球隨本橫軸轉動,恆當甲丙過天頂一圈線之中往來,而不離於左右。其軸之長徑與垂球之徑相等,以便自此軸中心至球之中心比測,而定垂線長短之尺寸分釐。其垂線為小「圈相連之銅鎖,其垂線之長短,其重之分兩,又垂球之分兩,皆須預知而準定,使毫不差失,而器於是乎全已。