跳转到内容

Page:Gujin Tushu Jicheng, Volume 035 (1700-1725).djvu/41

維基文庫,自由的圖書館
此页尚未校对

方廉隅法之圖

方廉隅法之圖

法曰:置積三百二十四步為實。約初商一十步於實 左,另置下法一十步於實右,名曰「方法。」與上商相呼, 一一除實一百步,餘實二百二十四步。就以方法一 十步倍之,得二十,名曰廉法。又約次商八步於左,初 商一十之次,共得一十八步。亦置八步於實右廉法 二十步之次,名曰隅法,共得二十八步。與左位次商 八步相呼,二八除,實一百六十步。又將左八對右八 相呼,八八除,實六十四步恰盡,若還原,自乘是也。

右《法》以「明方」 ,廉隅之名也。

假如今有《闊算盤》共子三百六十一箇,問每面子若 干?

答曰:「每面一十九箇。」

法曰:「置棋子為實,約初商一十步於實左,另置下法 一十步於實右。左右相呼,一一」除實一百箇,餘實二 百六十一箇。就以下法一十倍之,得二十。次商九箇 於左,初商一十之次。亦置九箇於右,倍方二十之次, 共得二十九,皆與左次商九相呼,二九除實一百八 十箇。又左九對右九相呼,除實八十一箇,恰盡。 今列開平方法定分左中右式。凡看字亦照算盤自左至右

今有方田,積三千一百三十六步。問平一面若干? 答曰:「五十六步。」

法曰:置田積為實,約實定初商五十步於左,另置下 法五十步於右,左右相呼,五五除實二千五百步,餘 積六百三十六步。就以下法,五十步倍之,得一百步。 次商六步於左,初商五十之下,亦置六步於右,倍方 一百,隔位之下,共得一百零六步。皆與次商六步相 呼,一六除實,六百步。又左六對右六相呼,六六除實, 三十六步恰盡。

今有方田積二十萬零七千九百三十六步,問平方 一面若干?

答曰:「四百五十六步。」

法曰:「置方積為實,約初商四百於左位,亦置四百於 右位,為方法。與上商相呼,四四除實一十六萬,餘實 四萬七千九百三十六步。就以方法四百倍作八百 為廉法。次商五十」於左初商四百之下,亦置五十於 右。廉法八百之下,為隅法。共八百五十,皆與次商五 十呼除。先以左五對右八呼,五八除實四萬。又左五 對右五呼,五五除實二千五百,餘實五千四百三十 六步。卻以下法,次商五十倍之,併廉共得九百,又為 廉法。又商六步於左初。次商四百五十之下,亦置六 步於廉法九百隔位之下,共九百零六,皆與左。再商 六步呼除。先左六對右九呼,六九除實五千四百。又 左六對右六呼,六六除實三十六步,恰盡合問。 今有方磚一千四百六十一塊,欲為平方。問一面方 若干?

答曰:「一面方三十八塊,又七十七塊之十七。」

法曰:置磚積為實,初商三十塊於左,另置下法三十 於右,為方法。左右相呼,三三除實九百,餘實五百六 十一塊。就以方法三十倍作六十,為廉法。次商八於 左,初商三十之下,亦置八於右,廉法六十之下,為隅 法。共六十八,皆與上商八相呼,六八除實四百八十。 又呼八八,除實六十四,餘實一十七,不盡,卻將所商 三十八倍之,再添一塊,共得一方數七十七,命一十 七。何謂之命?以原總數內除去一十七,另加上七十 七,便商,得面方三十九塊,因此不及而為之命。餘倣 此。

今有方田積七萬一千八百二十四步,問平方一面 若干?

答曰:「每一面方二百六十八步。」

法曰:「置方田積為實」,以開平方法除之。初商二百於 左位,亦置二百於右位,為方法。以左二對右二相呼, 二二除實四萬訖,餘實三萬一千八百二十四步。就 以方法二百倍作四百,為廉法。次商六十於左,初商 二百之下,亦置六十於廉法四百之下,為隅法。共四