新法算書 (四庫全書本)/卷098
新法算書 卷九十八 |
欽定四庫全書
新法算書卷九十八 明 徐光啟等 撰厯法西傳
引說
凡學非能驟成莫不始于格物以致其知而後從而推廣從而精詳焉以故古人因目所見心悟頓啓紀而騐之接續成書以詔來世乃成一學卽厯學亦然矣其初所悟者㮣不岀日月交食及冬夏四正五緯凌犯等觸目易見者數事因而再求之然後乃知月有本道焉交食有期有率焉又因而推廣之精詳之以及他數他理而厯學始為大全此如原泉一脈涓涓流而為壑浸假而百川彚集由湖由江以入於海浩浩乎無涯際矣後有好學者留思古人之學叅以己見曽無㡬許而附以傳世是為坐收其成豈可擅稱超悟屈抑前功哉余著厯書百卷大要取之古人而又括以厯引今復為此編先明西厯古書大指而次則遂及余書蓋一則著新法非一人之法非近創之法良由博古深思叅互考訂以得一真無容妄議一則令後之人便於循習曉暢數百年後測審差數推徃知來善於變通也或疑中西異法如格礙何余謂天行無隱君命非私厯至今日中人亦西學矣且即就中厯而論其根亦本於西如列宿距星皆同又列宿有屬太陽者四屬太陰者四亦同是知根本既同而清其枝幹通其脈絡有成書在展卷研求無不可見豈足相難哉學者勉之可也
西古厯法
西庠之學其大者有五科一道科二治科三理科四醫科五文科而理科中旁出一支為度數之學此一支又分為七家曰數學家曰㡬何家曰視學家曰音律家曰輕重家曰厯學家曰地理家七家俱統於度數要皆師傳曹習確有根據者也若多祿某即西洋厯學名師在郭守敬前一千百有餘年漢順帝永建時人著書一部計十有三卷
第一卷
詳証厯學大指如諸星運行天體渾圓地與海共為一球地居天與空氣之正中地較天大不過一㸃等項次著角理不但以句股測直線之長短且用曲線三角形量天是為以圓齊圓所得諸星相距度分最凖又求二至相距幾何度分在赤道內外㡬何度分並二曜相離最遠為㡬何度分設黃道緯度求赤道相應經度設黃道經度求赤道相應緯度
第二卷
論宗動天設黃道在地平上之㸃求其距赤道之地平弧設日之高求正側各景之長短又求黃道各㸃之半晝解正儀晝夜等衆星常見之故偏儀二至規下歲一次無景距赤道愈遠晝夜愈不等而兩極下毎歲為一晝夜
第三卷
考太陽行求二分時刻辯二至氣至時難求時刻求歲實與毎日太陽平行乃作平行立成表又推論日行用同心規及小輪或同心及不同心合一之理推地心與日規相距㡬何遠隨求太陽最遠㸃〈亦名最髙〉定太陽厯元及太陽行度毎日不等之數
第四卷
論太陰行証求太陰真行度即月食可考月有遲疾平三行乃求月平行併月每日緯度即以齊月諸行或用同心圏及小輪或不用同心圏二法同理設三月食求同心規及小輪兩半徑以定月諸行厯元又求月行正交中交之時推二交逆行之數
第五卷
解月自行以求月經緯度必用小輪推月加減立成表求月之更大緯度與月之地半徑差度復求日月二輪與地球半徑之比例及日月與地景之似徑〈地景其形如角所求之徑乃月所過截地景之處〉又求月半徑及景半徑與地半徑之比例求日真徑求日遠於地求景之長大〈以上三求皆以地半徑為度〉求日月地之比例〈原書稱三大𭅺日月與地〉設日月之遠求地半徑差推視差立成表比日月兩視差分月視差有三種
第六卷
解日月合㑹求日月平朔平望併定朔定望時及其宮度分求地景及月半徑定日月食限論日月半年中能再食月食後五閱月中能再食七閲月中不再食日於五閲月中各地能兩食七閲月中一地能兩食日於三十日中一地不能再食更求月正緯度設月真所在求視所在求月正會前後四刻之視行及日月似㑹〈卽日食〉𭅺求日食初虧食甚復圓三時定日食分秒
第七卷
論諸恆星遠近終古如一証其晝夜行外別有他行論其順天經行以黃道極為本極定歲差度設三星相距以二星經緯度求第三星經緯度詳測星法
第八卷
論天漢起沒詳天漢中大星所在及衆星拱向並其出入設黃道經緯度求赤道緯度等
第九卷
求五星每年及每日平行解五星大小輪理求水星之本行求水星最高求水星大小圏半徑比例又求水星小輪上平行以求水星各行厯元
第十卷
解金水二星之行求金星最高及不同心輪與小輪半徑比例設時定金星諸行厯元求土木火三星之小輪及小輪之本行〈亦名歲行〉設火星三處求其最高測從地心至不同心圏其遠㡬何求火星小輪之半徑推火星平行定火星諸行之厯元
第十一卷
解土木二星之理即求地心與木星本心之差及木星本輪與小輪之半徑並其平行定木星之厯元後設土星三次舍以求其最高求土星小輪之半徑而定其厯元設五星之平行求其實經度
第十二卷
解五政行度有退留疾等之故即求其留界及逆行之半弧更求金星左右距日之極大弧度並水星與日最遠度
第十三卷
論齊五星緯度之法求火木土三星各本圏及黃道交角並定其緯度論五星伏見先求火木土三星伏見相距之時次求金水二星伏見及其相距之時
以上十三卷屬多祿某所著除右引各目外尚有三百餘欵可為厯算之綱維推歩之宗祖也但其辭句太古淺學罕能習之故諸名家更互演譯各有論著今不及敘
後又有亞而封所乃極西寶祐時人身居王位自諳厯學捐數萬金錢訪求四方知厯之人務依先師所著創立成表以佐推算諸曜之法其功不在多祿某下緣屬祖述成書故今亦不及敘
又其後四百年有歌白尼騐多祿某法雖全備微欠曉明乃別作新圖著書六卷今為序次之如左第一卷
天動以圓解
第二卷
天並七曜圖解衆星各及其次舍解
第三卷
論歲差而証其行較古有異論歲實求太陽最遠㸃及隨年日時太陽躔度
第四卷
取古今月食各三度求月小輪之徑求大輪小輪之比例並月經緯度推日月交食
第五卷
求五星平行用古今各三測經度求大小兩輪之比例等終求其正經宮度分
第六卷
求五星緯度
以上歌白尼所著後人多祖述焉有西滿者嘗証多祿某歌白尼兩家之法惟一麻日諾又取歌白尼測法更為多祿某之圖益見其理無二矣
近六十年西土有多名家先後繼起較前人用測更精立法更盡造圖更美其一未葉大因悟不同心規與小輪難於推算於是更創蛋形圖以解天文根本設七政三測求最遠㸃又求地心與不同心差又求各輪比例等理其二第谷竭四十年心力窮究厯學備諸巧器以測天度不爽分秒第谷本大家饍養知厯人造器市書計用二十萬金著書計六卷
第一卷
取二分真氣至時
第二卷
取北極之高並解前人之謬解𫎇氣反光之差取二至真氣至時並解二至難得真時之故求太陽最逺㸃並地心與太陽心之差求加減數証最遠㸃之行度及太陽平行求歲實並推立成表用立成求日躔宮度而考其法
第三卷
以二十一月食求月平行設月行新圖以齊月行用兩大規及三小輪詳其所以然推立成並其用法仍各設假如求月緯度加圖及立成表算法因求月食又求月與地相距㡬何立推交食法因測五緯之真經緯度先考列宿之真經緯度
第四卷
解測星應用儀器乃駁古測有誤取金星與日與某星相距度以求某星距日度分㡬何取近黃赤二道距度並之以合周天全度復取六星之距度以經度相併適合周天之全度求角宿經緯度以起周天之度再求近赤道十二星經緯度証星之黃道緯度今古不同求星之經度並解其時八百餘星之真經緯度〈五十三年前〉復加百餘星赤道經緯度說
第五卷
解其時新見大客星計十二章一詳初起及漸大至與金星等並漸減二取附某宮星以定其經緯度三解測新星所用諸器四取新星與他星距度五解其更度幾何六用各法以求新星經緯度七求新星赤道經緯度八証新星不麗空際而麗列宿天九考新星之大小十取新星之似徑得三分三十秒十一証新星大倍於日大於地三百六十倍十二考衆星參差
第六卷測器諸圖
圖計五章一解用測器求三曜之高二解用測器求星之緯度三解用測器求星相距度四解各儀象五為天文答問
又第谷彗星解十卷
測彗星之高度尾之長短光之隱顯及其方向考十二星在黃道上度以求彗星之真所在設彗星離兩星之度求黃赤道經緯度求彗星毎日赤道經緯度求彗星所行之道及其道交黃赤之角處依每日彗星行黃赤二道作立成表証彗星在月上較月更遠於地為三百地半徑故知彗星在日月二天之中証其尾恆向日與金星作彗星行度圖徵彗星之大為月二之一尾長為九十六地半徑〈每地半徑為一萬五千里〉因考前人彗星之論當否
第谷沒後望遠鏡出天象微渺盡著於是有加利勒阿於三十年前創有新圖發千古星學之所未發著書一部自後名賢繼起著作轉多乃知木星旁有小星四其行甚疾土星旁亦有小星二金星有上下等象皆前此所未聞且西旅每行至北極出地八十度𭅺冬季為一夜又嘗周行大地至南極出地四十餘度𭅺南極星盡見所以星圖記載獨全
以上諸賢所著皆屬推解厯理近因古學奧深學者為難厯學家別有立成表及測天諸器以便初學又有永年厯亦立成之類預紀七政經緯及交食凌犯諸行取凖於天具舉其証葢由推測二功相佐而成不可疑也今論測器惟渾儀為最用之取日光求其躔度求日緯度求北極出地㡬何日出求東西之緯度求太陽午正之高推時求日星之高求太陽赤道經度求星出地平之時刻求太陽距子午規時刻求太陽出入並晝夜時刻以日星高求時刻又作地平日晷求朦朧時刻隨時求東出黃道宮度分
又渾儀挾持未便因又約為平儀體製雖異而施用不殊〈名渾葢〉乃有造平儀及百游各儀法其説甚多其用甚廣
又有日晷多種約言其法如作象限作卵形考墻面之方向求子午線設時求日之高設日之高求時分論有法日晷葢有六種一地平上晷一向南平靣晷一向東平面晷一向西平面晷一向北平面晷一向赤道平面晷詳每日晷有十二種線以景証日之行如此從地平起時線從子午起時線節氣線晝線過頂圏線日高線地球之徑圏八十二種高線㡬節氣出地平上線日出地平算某時刻日入地平算某時刻每日平分晝為十二時線〈名七政時線〉又有向南向北斜面雜向立面雜向倒面挖面或正圓或長圓正球偏球各日晷及各正表斜表法槩因無有定向稱無法日晷又設日晷一圖以大為小以小為大焉夫日晷大不越數尺小僅數寸而天之高遠太陽之行度經緯悉備變相以通其理多方以盡其能故曰厯學之廣大即日晷可徵也
右皆造日晷法然造晷用圖平行垂線最多下手為難乃用立成表其法更精成功更速又日晷之度數或用立成表查或用㡬何要法或用比例尺諸規矩究竟所得皆符不爽毫髮𭅺此而推所算日躔之密合亦並可見矣
合而觀之西庠之於天學厯數千年經數百手而成非徒慿一人一時之臆見貿貿為之者日乆彌精後出者益竒要不越多祿某範圍也已前所引在全書僅十分之一覽者𭅺所見以推所未見可也
西新厯法
余著新法悉本西傳非敢強天就法也乃為法以合天以測候為厯家之首務故修政以來除西製大銅儀數具外在局別造有半徑儀三座自心至邊或一丈或八尺具刻宮度分秒一一詳明以求適用日督同監局官生晝測日夜測月星三儀所測或並同或兩同者取以為凖若三各不同則置之俟再測如是者數年列宿距星遠近異同悉於是時考定凡遇五星凌犯伏見日月交食公同部司赴觀象臺測騐務求密合累𫎇欽遣內臣同來審視又因交食差官四方測騐異同嗣後奉命造進黃赤大儀及星晷天球大日晷等或內庭親測或偕內靈臺諸臣測如是者又數年於是上下相孚朝野悅服上乃決計散遣魏文魁等囘籍一意頒行新法惜兵事倥𬾠未免有待將來耳
中土徃代修厯不過加減四餘四應歲實等項已耳一時合天乆則仍錯有數十年一改者有數年一改者前改既非後改亦復如是厯學廢弛非一日矣余初奉命修厯時亦有以畧改舊法請者謂作者可免創始之勞述者兼得習熟之便然而不能也詳考舊法其錯非在算數乃在基本不清其基而求積壘不治其本而理枝幹其術未有濟焉者余故不辭艱瘁晝夜測騐天行叅考西法然後正其紕繆補其闕畧約有數十餘欵於是著成厯書解明法原詳整法數自太陽太陰恆星交食以迄五緯莫不條分縷析綱舉目全共計百有餘卷已經進呈御覽𫎇恩宣付史舘刋本傳布四方與海內知厯者共之矣茲更將法原諸書逐卷挈其大指以便觀覽如左
日躔厯指測凖歲實平視二行盈縮元及大差大距度等其題一求南北正子午線以定諸徑圏及十二時之界以記太陽行滿晝夜毎日之始末乃取凖於天非如從前徒用一指南針而已
一求北極出地度分以定日出入晝夜長短日月帯食日食有無並諸曜正斜照地等類此用象限儀或測日軌午正高得距赤道度餘即北極出地高度或測近極一星在最高又測之在最卑折中取之即正北極高也
一求各氣差氣從地發𫎇昧空中故自天頂以迄地平諸曜逐緯詳測定差分秒多寡因而加減原測卽得各曜真位也
一求黃赤二道之距以定太陽赤緯於夏至前後一二日測午正日軌〈必於午正者免蒙氣也〉乃於所測度內減去地半徑差並赤道高餘𭅺二道相距真度分一求太陽盈縮之元以定平行加減乃得每宮度相應之實行葢設太陽以平行旋天毎日前移一度則宜自秋至春與白春至秋日行之度數相等矣今天度等而所行日數不等相差八日有竒此何以故葢因地在太陽天內非其正中也故設一直線貫地心而以兩端接日天必分為大小兩半大半之頂距地遠日行經過之時乆小半之頂距地近日過此必速矣且日體近冬至現大近夏至現小冬至之月食大小又異於夏至之食總由地景長短大小係於日光遠近之故西古厯家二千年以來闡明此理並立測法傳之後人𭅺日躔並日月交食皆正其本矣乃此中厯家羲和而下守敬而上舉無有悟此者何也
又一求太陽年日及時之平行以定歲實以確立推算之根所謂厯元也法先後隔數年或春或秋於午正時測日軌務得二分之凖時〈太陽在二分其緯大日約得二十四分分應四刻故較他時所得為凖〉乃於先後間總時以中年分之得毎年之平行即真歲實而歲實又以周天平度〈三百六十〉分之得一日之平行時亦倣此但因日天心異於地心漸移右行二心相距遠近未有定數雖所移甚微而一二百年後必少覺之千年後差乃顯著則依本法復測復推以加以減即造厯無異今時故新法實永法也昔郭守敬若知此法可免歲餘上推百年増一下推百年減一之議惜乎不能也
一求太陽最高所在及地心與日輪天心相距之差以定加減始末以得隨時推日實行確法葢太陽西行及東本行之外其最高亦順十二宮漸漸東行二心〈卽太陽本圈心與地球心〉相距歲歲減少古測斷不可泥厯家若不諳此日躔無根又何慿以推五緯乎古西土去今千八百年以三角形測日軌記最高在申宮五度三十五分兩心之差為全徑百分之四分強千年後又一士測之得最高在申宮二十二度十七分二心相距為百分之三分半強及據今測又在未宮六度強二心之差不及百分三之半矣中厯從來以夏至為凖泥在未宮初度相沿不改豈非大誤
一求太陽視差即地半徑差此差旣由各天與地球大小之比例而生則欲求此差者須取一天與地最遠無可比例者為之則恆星天是已故於恆星天設三角形查與太陽交角相對之弧〈他曜倣此〉弧有大小而本差之多寡即見矣
一論日差以齊諸曜之行所關者大故詳推一立成表以便厯算𭅺太陽實行嬴縮毎日不等是也彼旋地一周復於元界〈子午圏是〉為日必等者稱用日葢民間所用也厯家若亦泥之則大惑矣
恆星厯指三卷其一以金星測恆星及黃赤道度等法於日未出時先測恆星與太白之距日出後又測太白太陽之距晩測反是先測太白與太陽而日沒後乃測太白與恆星因而求太白經緯視差及太陽經度則以曲線三角形法推得兩經度以較同測之星加減之並得本恆星之經度今以畢宿大星婁宿北星角宿距星等為假如定赤道經緯即餘星倣此可推矣
又測近黃赤二道所有諸大星任定㡬星晷距星為界或自西而東或自東而西求兩測之距度及距赤道之緯度用三角形法推得其經度差因連綴求之以迄一周所得經度若旣合於赤道周則所測各距之經度必皆密合矣乃復用之為界以測衆星皆可無不合者再以恆星赤道經緯度推其黃道經緯反復相求非三角形無由而得葢或星居兩道之中或南或北或居兩道相交之左右必設各極所出之曲線遇星而交而復相離各底本道而止乃為三角形者數矣最便推算且恆星依本法彼此相推不但其緯度終古不易即相距之經度差亦終古不易故凡推七政者必用恆星為界而後諸曜之遠近灼然不爽也
終引所資以測恆星者如測器如子午線如北極出地高如視差等皆是也葢測星有三求一求出地平上度分則用象限儀二求相距則用紀限儀三求距黃赤二道之度則用渾天儀若子午線者諸星行度升之極降之始也北極出地者所以正高下也凡用儀必以儀上極與本地之極高下相當𭅺經緯皆相當故測星者使無子午以正東西升降無極高以正南北高下即一切推算之法無從措手若視差就地半徑差論恆星以距地遠得免就清𫎇差論則恆星近地平必皆有之測時宜用減矣
第二卷測恆星黃赤本行其行黃道上即歲差也中厯論歲差有曰未能測其所以然第以全厯推之二萬六千八百八十年差一周天毎歲差一分三十餘秒上推至帝嚳甲子四十年日在虛六度至夏王不降乙未三十五年日退入女宿啇武乙丙寅四年日退入牛宿周簡王丁亥十二年日退入斗宿宋度宗戊辰四年日退入箕宿四度二分餘且言此定算也又或測日度者以月食衝求之可謂巧矣然而皆非也夫毎歲所差甚少月食分數頗寛安得藉此求彼此其謬一謂日退者即日逆行古來測日但有盈縮有公行有本行退逆之行理所必無此其謬二旣言未測其所以然何從而得一定之算此其謬三西法則以黃道二分二至為界據古所測某恆星距界之度從而復測之乃見遷移以較中古上古此星離冬至漸遠如前此居冬至者虛也今已順行東去繼之者為女為牛為斗又後為箕矣是知歲差係恆星前行與七政依黃道本行無異此為真所以然非日退之說也且西測星非詳得其分秒置不用非三四器三四人同地並得在一分以內者置不用此新法所以獨密也所得歲差定數為五十一秒〈依六十算〉由此得恆星歲實小餘為二十四刻九分又約二十七秒乃古今不易之則也
問星歲無差旣有定算如此厯家不用以推年日何曰立歲限以定所為主如四時如二至二分等日行皆有定所星算雖定而其右旋於各節氣恆無定所故難用推年日也
考黃赤道宿度今古變易緣諸星隨黃道斜交赤道故也每見太陽之行黃道夏日距赤道北冬距其南逐年如此豈非由二道斜交之故乎厯家同時測日經而兩道上所測度分必異又所差日各不等此為日經之變如從兩極各出直線以交日心引之徑過以至赤道兩線必不復㑹於一㸃以是知日經緯在赤道恆變𭅺恆星亦然逐漸右旋𭅺赤道宿度逐漸有變其數多寡前後必異惟黃道經度則終古如一而星亦終古如一斗恆似斗尾恆似鈎古二星在一直線者今時亦然彼此相距皆同也
累測黃赤兩道恆星之經度以推古今各宿積及本度並載厯指讀者以參觜不仍舊次為疑不知宿在黃赤二道原有分別其依黃道不變之度分參前觜後終古恆然若依赤道而論在昔雖先觜後參而近自二百年來則參先而觜後矣葢因兩道從兩極出線以定度數故有異也
第三卷以黃道經緯變赤道經緯及繪星圖數法葢星之去離赤道無恆而其去離黃道有恆即黃赤二道之相距亦如有恆以兩有恆求一無恆則依曲線三角形以乘除三率等法推算可得若直欲從赤道求之無由而得矣緣星行依黃道以向赤道時有遷移故也
繪圖舊以恆隱圏界為總圖界星偏河南之南不復有圖矣新法因見隱圏南北隨地不同故以兩極為心以赤道為界或又簡以中土恆見之圏為界繪總星圖閩粵以北可見諸星無不具載至圖內正斜各圏直曲各線依星本經緯應入其中者本卷一一詳之乃除天漢積屍氣等無算小星外凡可見可測者別以六等令星在圖在天大小異形無不相肖
月離厯指計四卷首卷論測月平行䇿及遲疾加減正數如各種行度一隨宗動天日一周行二依本天順白道自西而東平行此或以太陽為界從合朔起算或以宮次節氣為界從各㸃起算謂之交周滿一周謂交終三依本輪自行從東而西然依輪之上順行依輪之下則逆本天而行但緣月行甚疾地面但見其遲不見其逆此行謂之轉行滿一周謂轉終四隨次輪乃本輪之周復有一小輪其心隨本輪左旋月在其上則又右旋滿一周名為次轉終也五為交行月行白道出入黃道西行所交於黃道中線兩㸃一名正交一名中交舊所稱羅計是也外又一次輪實測則有而據之以推度數頗微無大用又一面輪使月一面恆照下向地此亦無關疎密皆置不論
論測月平行乃因視差及𫎇氣差參錯難分月體且月體恆虧無從測心以此測月最繁度分難得其凖須按西古今法於月食時騐而知之晉史姜岌亦以月食衝騐太陽所在然而考太陽之躔度易考太陰之離度難在姜為倒用兩率皆疎矣且平行亦非一食可騐也葢任用一食僅得當時之行度何由遽定平行必擇前後兩食各率均齊者以為兩限然後取其中積平分之庶免日去地時近時遠所生闇虛時大時小與夫月轉時遲時疾時在最高時在最卑諸凡月行不平之綠也但欲得此前後食務須求之記載今考二十一史天文志但記有年月日而畧時刻分秒無已借西厯補之
論測正中交行度葢月本圏之自行度曰轉行及於黃道曰交而轉滿一周曰交終其在後不及轉之度即謂兩交之逆行也測法亦用月食考古無傳仍依西史如前法用兩月食測其前後各率均齊得交逆行日三分十一秒歲十九度零十九秒四十三微此為二千年前古測後史各加密測推得交行毎年盈一秒四十二纎應減
論用不同心圏與用小輪名異理同皆藉以分布度數解明七政盈縮遲疾之行乃公借古今測定本輪之大小遠近之比例以求加減差立推算各表之法然而創始難工増修易善厯家積功二千餘年至近代測騐而後漸次加精較古為密也終定太陰諸行厯元宜命一定地以慿起算𭅺依本地初度初分為凖以加以減推算各地本時本曜之各所在度分此法從古未有且測北極出地中率不合葢前人未悟地半徑差與𫎇氣差於二至所測之高應有加減故未得真高也
二卷論測次輪次加減遲疾及半徑差月徑地景徑等乃引古今西史月天諸輪之圖解各所遲疾行之理並經緯隨時度分更推假如令數與圖互相發明因知欲求月離真所非一均數可定葢雖加減本輪之自行度可得定朔定望緣距限在五度內故然而二及左右之自行差則異於朔望其距限大至七度半強矣故據次輪之自行加減立第二均數於理為盡從是可得太陰之視行實經度
次定交周交行及交行之厯元皆於月食取法葢須前後兩月食其距太陽之最高遠近均等兩食分等兩食之在陰厯陽厯正交中交亦畧等則因兩食之中積而得交㑹及交終之數依此用三率法以各數推得交行之度分又得月平行距交之度並其平行距宮次或節氣之度兩數之較為三分十一秒是為兩交一日逆行之數所謂羅計行度也若交行之厯元亦於兩月食得其諸率各等則必並得其距交亦等葢交終由兩食之經時而知今定交應則因兩食之月距交等度考其中積時自行滿交周外即得其距交㡬何度分是厯元也遂命曰某年天正冬至為厯元而某處某府為厯元本所
又次測黃白二道相距度分法求月軌極高以免諸視差加減故乃得距赤度分去減黃赤距度餘為黃白距度此西古今通法中厯黃白相距恆大於西術謬矣其推月食恆小於天騐殆緣於此論月視差此因地半徑而生與他曜同但月天視地為近為卑則地與本天各半徑之比例其視差並大古今累測得數無異約一度故測太陰先得其視高乃以地半徑差加之得數又以𫎇氣差減之此為實高如反推則得其實高乃以地半徑差減之得數又以𫎇氣差加之此為視高具見本表但𫎇氣之差因地因時所在各異必求本地勢本時刻之確數定之
終測月徑地景徑或由月食測定食分並推求其自行距交距黃道等率而得或以測太陽之似徑比於地而並記其月距地設三角形推月與地各徑又地半徑之比例而兩徑可定
三卷論測日月地大小近遠之比例引古今法數種先求各視徑大小如日食時月視徑隨地不等其各視徑與實徑大小絕異又如月視地為小月天視六曜天為小去人又近後定日月之實徑推各體之容詳測日月各距地之高論月天象數及諸月表之原
四卷論測太陰見伏光體並四餘辯天行無紫氣等引古今交食以証新法並為後學之資葢因中史失載交食分秒及陰陽厯與太陽之距最高太陰之自行度分等後人無慿推歩以資修改故悉取之西史
交食厯指第一卷詳太陽光景地景及日食之故先引界說如何為暗體原光照光次光滿光又如何為初景次景滿景葢食生於景景生於光滿景非暗也稱光暗之中即日月食可辨
凡交食或地食光於月景為日食或月體食光於地景為月食乃日月地三球各體大小不等有靜有動去人有遠有近當求其大小遠近之比例推其施光受光之體勢乃得交食之體勢今設兩球大小等一暗一明明者半面施光暗者半面受光無分遠近未有交食者也若明球小暗球大暗以小半受光明以大半施光此為太陰照地而地受其隔日之光也凡大施小受施以小半受以大半二體彌近大者施光之小半彌小小者受光之大半彌大此即日居最卑而食之勢也若夫小施大受則又二體彌遠而施者亦彌小受者亦彌大此月食之分數有多有少而月近地居景厚處食分多遠地居景薄處食分少總由大小遠近之比例而生也
又詳景之處所在受光之背面乃因月與地勢能出景在日食則為月景下至於地月食則為地景上至於月景形為角形緣出景之圎體與太陽大於地於月之倍數相當也月望月有食乃地景隔日光令月不受照有時失滿光有時全失光月朔日有食乃月隔日光令地不受照有處射滿景有處存少光皆係景之作用也至論月在景之光色或赤或雜或青黒色皆有占騐或生於氣景或映於旁光或染於近地之清𫎇氣皆能令月現種種色也論食之期二景旣隨日月所至終古不爽即有定候一在定朔一在定望當食必食多寡先後上下千百世可知此則本卷益加詳焉
第二卷詳交食諸類及推交食之原與簡法葢日月之行雖有隅照方照六合照等悉無交食獨相㑹相望〈亦名合㑹照會〉有食詳之則有實㑹中㑹視㑹之別皆為推歩之原三㑹或較於地心或較於地面各異實㑹中㑹相距又無定度必先推求各元法從本天大小圏以厯元並以三角形細推乃能成表為密求法以便後人葢因得其所以然而後握簡御繁無難也
第三卷求推交食依人目所見儀器所測之時刻及所食分數之原必應改實時為視時而此地此時見食彼地則異時見食也故可隨地推交食之有無又可上推徃古下騐將來萬年悉如指掌若食分之多寡旣原於日月地景之各視半徑則定視徑分秒之數逆計太陰居最高或最卑本視徑差地景即因太陽居高居卑不同其照地生景之差以得各實差然後食分可得而定矣
第四卷詳食限食甚前後時及繪食圖以解各食向位論限日與月不同葢雖同以所行各道經度距交㡬何為有食之始然而月食則太陰與地景遇因而兩周相切即以兩視半徑並較白道距黃道度推交周度以定食限日食則太陽與太陰遇雖亦兩周相切而有視差必先加入視差而後得距度定其食限也惟其食限各異故推太陰越五月能再食越七月不再食而太陽越五月七月皆能再食
至於食分則以距度求之葢兩周之心相距之度也在月食則為太陰心實距地景之心愈近食分愈多在日食則為日月兩心以視度相距其近遠不依實度而依目視之所及為凖此即月食分天下皆同而日食分隨人目東西南北各異之〈原也〉食分以緯度而定食甚前後時刻則並以經緯而定葢太陰本時距度多寡不同即入景淺深亦不同淺則厯時少深則厯時多此葢從緯定也若就經論太陰之自行時疾時遲緯與視徑雖同而自行每食不同即所得時刻亦必不同但太陰入景之弧與出景之弧畧等故依其行弧推食甚前之時倍之隨得食甚後至復圓之時乃日食時刻則又以視差有異焉
交食圖列方位方位者日月失光之靣所向之方也法先考本食是陰厯或陽厯更考黃道是斜交地平與否葢黃道斜交日月亦依以斜行食時方向必異不可不審也故繪圖以一直線過日月二心審其與地面相遇之勢乃定日食方位過日景二心審其與地平相遇之勢乃定月食方位舊法徒以陰陽二厯求之疎矣騐時安得合乎
第五卷詳日月視差及日食掩地面㡬何凡推歩日食要以人目為主目見之㑹非實㑹而視㑹也此差雖由地半徑生〈以人目在地面不在地心故〉更為人目差分別有三等一高卑差以天頂為限一南北差以黃道為限此限能變諸曜緯度一東西差以黃道九十度為限其左右能變經度及時刻測此三差悉用三角形因設地半徑為一邊日月各距地高為一邊各距地靣之遠為一邊測之乃得高弧或正或斜交於黃道以四方分視差然東西南北二差又時有變務彼此相較展轉推求可也
論日食之掩地面必係全食或係應不見光之地面又或本日太陽適在最卑而其視徑大似太陰之視徑若此則雖二曜之心合而周邊大小微異乃見金環焉又總論見食之地其廣㡬何且見食進退一分應地面㡬何由是以推各國各省能見食與否並食分多寡等義
第六卷依原算日食以顯推表及其所用之所以然必以視差求視㑹因詳前引三差𢘆垂向下高卑差為正下南北差為斜下東西差獨中限之一線為正左右皆斜此是太陰所變距黃道度及順黃道經度用以加減時刻並求食分可矣但除地半徑差外別有三差名外差不生於日月地而生於氣一曰清𫎇高差乃地所出清𫎇之氣能變易高下二曰清𫎇徑差日月居其中隨變本徑之大小三曰本氣徑差本氣者𭅺月天以下空中氣也較清𫎇為更精微亦能變太陽之光照令目所見之視度視徑隨地隨時大小不一也
第七卷測考食分方位及時刻務推與測並行以自騐其法密與否西厯家創法之初審之於天以求其當然成法之後復考之於天以証其必然正此意也交食推法旣備前卷本卷則引測交食多寡之式如測日月各食分或於室內或於室外以真光形如遠鏡等承其射光之容𭅺食分多寡可得非舊法水盤所能及也至二曜食時所向之方位或正或偏測與算合不爽毫末又日月或全或零食之時其變形之限如二食所共者初虧食甚復圓月食所獨者食旣生光皆可得其凖也
五緯厯指一卷公論定各星古今次序測五星平行均數據古傳太陰最近地其次為水為金為日而火而木而土而恆星古又謂諸天皆以地心為本心今測則惟日月與恆星為然五星各與地不同心𭅺各視差及各高卑距地遠近可徵也
五星諸行較恆星與太陽而得古今共法也乃先記其各平行而因各本行圏皆與地為不同心圏並亦定其本行而更以古今圖様解之且增以新測五星左右異像焉
第二卷至六卷毎卷測定五緯一星之最高及本天與地中兩心之差並各星表厯元以得各自行及歲行加減等度分但金水二星之行相似與火木土異葢火木土或㑹或衝太陽以其實行為歲行之界而金水𭅺以太陽平行為本天之平行其本天不出太陽之本輪因加小均輪以齊其順逆行天一周有二伏二見之時非彼三星每歲一㑹一衝太陽可比也又火星或以其行甚曲或以其行之遲疾不等有時四五旬日行過一宮有時二百餘日不及一宮行似無法茲窮究其理以著於圖定其經緯高卑之行使測與推諸用法皆明也
第七卷論五星緯行推其與恆星或互相照或同出入以定其凌犯近遠見伏諸類葢舎緯行南北多寡而止論經行𭅺凌犯諸類無從得其全也故引古今累測遊星之緯記其各本道與黃道之交角並繪圖用三角形所推兩道濶狹以顯其實相距之比例又定五星各本天交行而較火木土於金水詳其緯從何而生從何而有異同也
第八卷著諸曜凌犯相照伏見之原解七政遲疾二行五星留逆順合衝各情並著表繪圖求入宮入宿等法並論農家占歲醫家療疾人預知天時之雨暘皆由日月五星所命又定月大月小節氣閏月諸法
第九卷依古今法測五星各距地之遠近以推其降施之力測各視徑及實徑之大小定其凌犯及諸照之密合查五星光色以考其照物之性情葢星皆借日光之分而所發光色各異有如鏡者有如水者有如金者殆由各染本體之色而然又據新法新測以考中厯之古測乃知古測晨夕二留日時折半以求合伏之時非法也又其所用表晷簡平等儀皆與星行之道絶不相似而用以測五星則非其器也大約測五星須用黃赤全儀弧矢儀經緯象限等與其行相類者而又常較之於恆星乃可得其凖也
以上畧引書目皆歸厯原以全修厯之學闕一不可古之論厯者或務改厯元如氣應等或務正定歲差不則求之合朔求之五星求之宿度而已總皆掛一漏萬其法立窮必如新法乃為無歉且此外更著學厯要書如割圓法八線表視學㡬何要法測量全義渾天儀用法比例規籌算開方等法以為旁通之學而厯學於是乎大備後有學者宜究心焉
新法算書卷九十八
Public domainPublic domainfalsefalse